

Selective optical doping to predict the performance and reveal the origin of photocurrent peaks in quantum dots-in-a-well infrared photodetectors

by

Linda Höglund

Q. Wang, S. Almqvist, E. Petrini, J.Y. Andersson Imagic, Acreo AB, Sweden

C. Asplund, H. Malm IRnova, Sweden

P.O. Holtz, Linköping University, Sweden

H. Pettersson, Halmstad University and Lund University, Sweden

Outline

- 1. Motivation and background
- 2. Optical pumping as artificial doping
- 3. Optical characterisation to reveal interband transitions
- 4. Origin of photocurrent peaks
- 5. Predicted performance
- 6. Summary

Acreo / IRnova manufactures IR detectors based on quantum wells

Quantum wells

Quantum dots-in-a-well structure

Further development through replacement of quantum wells quantum dots

The detection wavelength is partly determined by the dot and partly by the well -> more freedom in the design of the structure.

Structures and components in this study

 $170~\mu m~x~170~\mu m\\ single~pixel~components$

Bias dependence of the photocurrent

Responsivity limited by:

- tunneling
- lack of doping of the QDs

Appl. Phys. Lett. 93, 103501 (2008)

How much can the responsivity be increased?

Temperature dependence of the photocurrent

Temperature dependence

Optical pumping as artificial doping

MWIR-LWIR

How much can the responsivity be increased?

Optical pumping as artificial doping

Selective filling of:

How much can the responsivity be increased?

Optical pumping as artificial doping

Selective filling of:

Optical characterisation of the DWELL material

The interband transitions of interest were revealed using:

Photoluminescence (PL)

PL excitation (PLE)

Photoluminescence (PL)

-> ground state transition energies

Optical characterisation of the DWELL material

Photoluminescence (PL)

-> ground state transition energies

PL excitation (PLE)

-> excited state transition energies

Optical characterisation of the DWELL material

Photoluminescence (PL)

-> ground state transition energies

PL excitation (PLE)

-> excited state transition energies

Optical pumping to identify photocurrent peaks and predict the performance

Optical pumping technique → selective filling of energy levels

Optical pumping to identify photocurrent peaks

Optical pumping to identify photocurrent peaks

Max. response?

MWIR-LWIR 1165 meV meV

The performance was investigated by filling of the energy levels with dual source optical pumping.

10 times higher responsivity

→ ≈ 150 mA/W

Summary

- Optical pumping used as artificial doping
- Low temperature photocurrent peak identified
 - originates from QD excited state
- Responsivity predicted to be at least 10 times higher than in the undoped case ≈ 150 mA/W

Further reading:

- * Appl. Phys. Lett. **93**, 103501 (2008)
- * Optical pumping as artificial doping in quantum dots-in-a-well infrared photodetectors soon published in Appl. Phys. Lett. 94 ... (2009)

Thank you!

- Q. Wang, S. Almqvist, E. Petrini, J.Y. Andersson Imagic, Acreo AB, Sweden
- C. Asplund, H. Malm, J. Borglind, S. Becanovic IRnova, Sweden
 - P.O. Holtz, Linköping University, Sweden
- H. Pettersson, Halmstad University and Lund University, Sweden